Code No: R15A0505

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, January 2024 Principles of Programming Languages

Roll No	(CSE)										
	Roll No										

Time: 3 hours

Max. Marks: 75

[**3M**]

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

- Define imperative programming paradigm. Provide an example of a popular programming 1). a [2M] language that follows this paradigm.
 - How do influences on language design impact the development of programming b [**3M**] languages? Provide an example.
 - What is a user-defined data type? Give an example of a user-defined data type and explain [2M] С its purpose.
 - d Explain the concept of variable initialization. Why is it important in programming?
 - Explain the concept of short-circuit evaluation in Boolean expressions. [2M] e [**3**M]
 - f Explain the concept of the scope and lifetime of variables.
 - Provide a language example for illustrating the implementation of abstract data [2M] g types in C++.
 - What is subprogram-level concurrency? Provide a brief explanation. [**3M**] h
 - Provide an overview of the basic elements of Prolog, a logic programming [2M] i language.
 - Provide a brief introduction to LISP, one of the functional programming languages [**3M**] j

PART-B (50 MARKS)

SECTION-I

2 Discuss the programming paradigms of imperative, object-oriented, and functional [10M] programming. Provide examples of languages that represent each paradigm.

OR

3 Discuss the concept of parse trees and their role in understanding the structure of [10M] programming languages. Provide an example of a parse tree.

SECTION-II

4 Discuss the concept of strong typing in programming languages. Provide examples [10M] to illustrate the strong typing concept.

OR

5 Explore the design and implementation uses related to pointer data types. Provide [10M] examples to illustrate their practical applications.

SECTION-III

Explain the purpose and implementation of guarded commands. Provide examples [10M] 6 to illustrate their use.

7 Explore the concept of overloaded subprograms, covering the benefits and **[10M]** providing examples. Additionally, discuss the design issues related to functions with user-defined overloaded operators and coroutines.

SECTION-IV

8 Explore the concept of abstract data types in detail, covering abstractions, [10M] encapsulation, and design issues. Provide examples to illustrate each point.

OR

9 Explain the basics of exception handling, including exceptions, exception **[10M]** propagation, and the role of exception handlers in Ada, C++, and Java.

SECTION-V

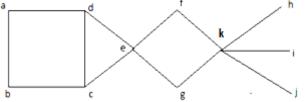
10 Write a comprehensive introduction and overview of logic programming **[10M]** languages. Discuss their key characteristics and applications, emphasizing the strengths of this programming paradigm.

OR

11 Discuss the applications of functional programming languages in various domains, **[10M]** such as artificial intelligence, data analysis, and mathematical modeling.

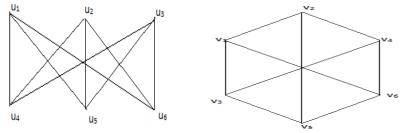
R15

(Autonomous Institution – UGC, Govt. of India) **II B.Tech I Semester Supplementary Examinations, January 2024 Mathematical Foundation of Computer Science** (CSE) **Roll No** Max. Marks: 75 **Time: 3 hours Note:** This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. *** PART-A (25 Marks) 1). a Write converse and contrapositive of the following conditional statement [2M] "If a triangle is not isosceles then it is not equilateral". b Using the statements R: Arjun is Happy H: Arjun is rich. [**3M**] Write the following statement in symbolic form, i) Arjun is neither happy nor rich. ii) Arjun is poor or he is both rich and unhappy. Define a Group and Subgroup. [2M] С d Let the relation $R = \{(1,2), (2,3), (3,3)\}$ on the set $\{1, 2, 3\}$. Find the transitive [**3M**] closure of R. [2M] Define Sum rule and product rule. e How many permutations can be made with letters of the word ENGINEERING? f [**3M**] What is the generating function of the sequence 8,26,54,92..... [2M] g Determine the coefficient of x^{12} in $x^3(1-2x)^{10}$ h [**3M**] Define a planar graph. i [2M] Draw the graph with the degree sequence 2,2,3,3,3. If possible i [**3M**] PART-B (50 MARKS) **SECTION-I** 2.a) Is $(p \rightarrow q) \rightarrow ((p \rightarrow q) \rightarrow q)$ a tautology? [**4M**] Verify that the following argument is valid by using the rule of inference. b) [6M] If Clifton does not live in France, then he does not speak French. Clifton does not drive a Datsun. If Clifton lives in France, then he rides a bicycle. Either Clifton speaks French, or he drives a Datsun. Hence, Clifton rides a bicycle. OR Obtain the principle conjunctive normal form of


MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Code No: R15A0503

- 3.a) Obtain the principle conjunctive normal form of [5M] $(p \rightarrow (q \land r)) \land (\neg p \rightarrow (\neg q \land \neg r)).$
 - b) Using proof by contradiction method, prove $P \rightarrow \neg S$ is a valid argument from the [5M] premises $P \rightarrow (QVR)$, $Q \rightarrow \neg R$, $S \rightarrow \neg R$, P.


SECTION-II

	SECTION-II	
4.a)	Let A= {1, 2, 3, 4, 6, 8, 12, 24}.Draw the Hasse diagram on set A under the partial ordering relation "divides".	[5M]
b)	Find all group homomorphisms from Z_4 into Z_{10} .	[5M]
5.a)	OR Determine whether each of these functions is a bijection or not from R to R $i)f(x) = -3x + 4$ $ii)f(x) = -3x^2 + 7$	[6M]
b)	iii) $f(x) = (x + 1)/(x + 2)$ iv) $f(x) = x^5 + 1$ Define a Semi group and Monoid. Give an example of a Monoid which is not a	[4M]
	group.	
6.a)	SECTION-III How many different arrangements of the word ELLIPSE are possible if i) There are no restrictions	[4M]
b)	ii) The arrangement starts with S State pigeonhole principle. Show that in a group of 367 people there must be atleast one pair with same birthday.	[6M]
	OR	
7.a)	In how many different ways can the letters of the word CORPORATION be	[4M]
	arranged so that the vowels always come together.	
b)	In a survey of 100 students, it was found that 30 studied Mathematics, 54 studied Statistics, 25 studied Operations Research, 01 studied all the three subjects, 20 studied Mathematics and Statistics, 3 studied Mathematics and Operation Research and 15 studied Statistics and Operation Research. Find how many students studied none of these subjects and how many students studied only Mathematics?	[6M]
	SECTION-IV	
8	Solve the recurrence relation $a_{n+2} + 3a_{n+1} + 2a_n = 3^n$ for $n \ge 0$, $a_0 = 0$, $a_1 = 1$ using characteristic root method.	[10M]
9	OR Solve the recurrence relation $a_n + a_{n-1} - 8a_{n-2} - 12a_{n-3} = 0$ for $n \ge 3$, given that	[10M]
)	solve the recurrence relation $a_n + a_{n-1} - a_{n-2} - 12a_{n-3} = 0$ for $n \ge 3$, given that $a_0 = 1, a_1 = 5, a_2 = 1$	
	SECTION-V	
10.a)	Find the Hamiltonian circuit if exists of the following graph.	[5M]
1 \	U_1 U_2 U_3 U_4	[6] 6]
b)	Draw the spanning tree for the following graph using BFS Algorithm.	[5M]
	a d f h	

OR

11.a) Show that the following graphs are isomorphic or not.

b) Write the chromatic number of complete graph, cycle graph, bipartite graph, [4M] regular graph.

[6M]

Code No: R15A0024

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, January 2024 Probability and Statistics

(CSE)										
Roll No										

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ***

PART-A (25 Marks)

				PA	KI-A	(23 W	larks)					
А	C	ontinuc	ous	rando	om	vari	able	has	t t	he	pdf	[2M]
f(x)	$= \begin{cases} k \\ k \end{cases}$	$x^2 for$	r 0 < x otherw	: < 1								
7 (2		0,	otherw	vise.	Deter	mine k.						
G ()	1.7	~ ^										[2] []
Stat	e and F	Prove A	Addition	Theore	m for t	wo var	lables.					[3 M]
Wri	e the p	propert	ies of C	orrelatio	on Coe	fficient						[2M]
	ulate t	-		coefficie	ent	[T		_			[3 M]
Х	1			-	4	5	6	7				
Y	9	,	-	-	12	11	13	14				
				l Estima					1 4 4 9 7			[2M]
					-	-			nd 14054	ł		[3M]
-		-		d 95% (erval fo	or the m	ean.			
Exp	ain Or	ne-taile	and I	'wo-taile	ed tests	5.						[2M]
Δm	ng 90)0 neor	ole in a	state 90) are fo	ound to	he ch	anathi e	aters Co	onstruct	99%	[3 M]
				e true p				upuin e		Jiisti det	///0	
				-	-							[2M]
D .	41	- 1			3							L]
FIII	the va	alue of	xyz 11	$\begin{array}{cccc} 0 & x & \frac{1}{3} \\ 0 & 0 & y \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{3} \end{array}$.pm.						
			L;	<u> </u>	z							
Def	ne i)	Transit	tion Ma	trix ii) F					hain.			[3M]
				PA		(50 MA		1				
					_	TION						
A R	andom	n variab	ole X ha	s the fol	lowing	g Proba	bility fu	inction	:			[10M]
V	<u> </u>	0	1		2	1		5	6	7		
X		0 0	1 <i>v</i>	2	3	4		$\frac{5}{w^2}$	$\frac{6}{2W^2}$	<i>1</i>	17	
P(z)	x)	U	K	2K	2K	3.	Δ	K^2	$2K^{2}$	$7K^{2}$ +	- K	

 $\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline P(X) & 0 & K & 2K & 2K & 3K & K^2 & 2K^2 & 7K^2 + K \\ \hline \text{(i) Determine K (ii) Evaluate } P(X < 6), P(X \ge 6), P(0 < X < 5) \text{ and} \end{array}$

 $P(0 \le X \le 4)$ (iii) $P(X \le K) > 0.5$, find the minimum value of K and,

(iv) Determine the distribution function of X (v) Mean (vi) Variance.

R15

2			OR		[10] []				
3	A Continuous ran $f(\mathbf{x}) = \int \mathbf{k} d\mathbf{r}$	ndom variable has $(1-x^2)$ if $0 \le x \le 1$	the p.d.f		[10M]				
	$f(x) = \begin{cases} k(1-x^2) \text{ if } 0 \le x \le 1\\ 0, \text{ otherwise} \end{cases}$								
	Determine	, other (150							
	K ii. Mean ii	i. Variance							
			SECTION-II						
4		fficient of Rank C			[10M]				
	x 68 64 75		40 55 64						
	y 62 58 68	8 45 81 60 6	68 48 50 70						
~	T 1.1 1	1. 6	OR		54.03.63				
5		on line of x on y and $x = 10$		ollowing data	[10M]				
	X		1617202527293337						
	I		ECTION-III						
6	A population con			onsider all possible samples	[10M]				
Ũ				this population. Find					
	i) The popul		1	1 1					
	ii) The popul	lation standard dev	viation						
		of the sampling di							
	iv))The stand	lard deviation of the	he sampling distri OR	bution of means					
7	In a sample of 10	000 people in Karr	nataka 540 are ric	e eaters and the rest are wheat	[10M]				
			ce and wheat are	equally popular in the state at					
	1% level of signif								
0			ECTION-IV		[10] []				
8				ditions. Two random samples	[10M]				
				leviations of their weights as distributions are normal test					
	0.8 and 0.5 respectively. Assuming that the weight distributions are normal, test the hypothesis that the true variances are equal.								
			OR						
9	Two random sam	ples gave the follo	owing results:		[10M]				
	Sample	Size	Sample Mean	Sum of Squares of					
				Deviation from the Mean					
	1	10	15	90					
	2	12	14	108					

Test whether the samples came from the same population.

SECTION-V

10 An urn A contains 5 red, 3 white and 8 green marbles while urn B contains 3 red [10M] and 5 white marbles.

A fair die is tossed; if 3 or 6 appears a marble is chosen from B otherwise from A. Determine the

probability that a) a red marble is chosen, b) a white marble is chosen, c) a green marble is chosen.

				OR
11	Find the equilibrium vector	[0.5	0.2	0.3]
	Find the equilibrium vector	0.1	0.4	0.5
		l0.2	0.2	0.6

[10M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, January 2024

Electronic Devices and Circuits

Roll No					

Time: 3 hours

Code No: R15A0401

Note: This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1) a b c d e f	Write Diode current equation Write the effect of temperature on diode characteristics. What are the Harmonic components in a Rectifier What is the need of rectifier? List different types of rectifiers Define alpha and beta of the transistor Make use of the values of transistor has β =150, find the collector and	[2M] [3M] [2M] [3M] [2M] [3M]
g h i j	base current if IE= 10mA What is operating point What is thermal runaway Define pinch off voltage of a FET Differentiate Enhancement and Depletion MOSFET PART-B (50 MARKS)	[2M] [3M] [2M] [3M]
2	<u>SECTION-I</u> Describe the principle of operation and characteristics of tunnel diode with the help of Energy Band diagrams	[10M]
3	OR With suitable expressions explain transition and diffusion capacitance <u>SECTION-II</u>	[10M]
4	 A. With suitable wave forms explain bridge rectifier B. Describe the working of a Zener Diode as a Voltage Regulator OR 	[6M] [4M]
5	Derive the equation for the efficiency of a half wave rectifier circuit SECTION-III	[10M]
6	Draw the circuit diagram of an NPN junction transistor in CE configuration and describe its characteristics	[10M]
7	OR Explain the construction and working of BJT.	[10M]

Max. Marks: 75

SECTION-IV

Explain the collector to base bias method along with circuit diagram and derive [10M] 8 the stability factor for it

OR

9	Draw and explain the circuit for bias compensation using diode	[10M]
	SECTION-V	
10	A. Explain how FET works as voltage variable resistor	[6M]
	B. Compare BJT and FET	[4M]

Explain the constructional features of a depletion mode P-channel and [10M] 11 Enhancement mode MOSFET and explain its basic operation

OR

Code No: R15A0461 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, January 2024

Digital Logic Design

Time: 3 hours

(CSE)												
Roll No												
									•			

Max. Marks: 75

Note: This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ***

PART-A (25 Marks)

	1/1(1-1) (25 Marks)	
1). a	Convert $(125)_{10}$ to octal	[2M]
b	Construct AND gate using NAND gate	[3 M]
с	What is Prime Implicants?	[2M]
d	Simplify $A(B+C)+AB+ABC$ using Boolean's theorems	[3 M]
e	Construct 2:1 multiplexer?	[2M]
f	Design a half adder logic circuit	[3 M]
g	Differentiate between combinational and sequential circuits	[2M]
ĥ	What is a ripple counter?	[3M]
i	List various types of semiconductor memories	[2M]
j	What is memory read and write operations?	[3M]
5	PART-B (50 MARKS)	
	SECTION-I	
2	Explain the Binary codes with examples?	[10M]
	OR	
3	State De'Morgan theorems. Simplify the following Boolean expressions to	[10M]
	minimum number of literals (i) x y $z + x' y + x y z'$ (ii) (x +y) (x + y').	
	SECTION-II	
4	Simplify the following Boolean function using K-map:	[10M]
	$F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$	
	OR	
5	Simplify the expression $Y = \pi$ (7, 9, 10, 11, 12, 13, 14, 15) using the k-map method	[10M]
	SECTION-III	
6	Explain the design procedure for multiplexers and draw the logic diagram of a 4-	[10M]
	to-1 line multiplexer with logic gates	
	OR	
7	Describe BCD to excess-3 Code Conversion with truth table and logic diagram	[10M]
	SECTION-IV	
8	Explain the working of the following	[10M]
	i) S- R flip-flop ii) D flip-flop	
	OR	
9	Design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6.	[10M]
	SECTION-V	
10	Realize the functions using PAL	[10M]
	$F1(A,B,C,D) = \Sigma(2, 12, 13)$	
	$F2(A,B,C,D) = \Sigma(7, 8, 9, 10, 11, 12, 13, 14, 15)$	
	OR	
11	Explain about RAM in detail.	[10M]

Page 1 of 1